Academic subject: Critical Points Theory

Degree Class: LM – 40 Matematica
Degree Course: Mathematics
Academic Year: 2018/2019

<table>
<thead>
<tr>
<th>Kind of class:</th>
<th>Optional</th>
<th>Year:</th>
<th>Period:</th>
</tr>
</thead>
</table>

ECTS: 7
divided into
ECTS lessons: 6,5
ECTS exe/lab/tutor: 0,5

Time management, hours, in–class study hours, out–of–class study hours
lesson: 52
exe/lab/tutor: 8
in–class study: 60
out–of–class study: 115

<table>
<thead>
<tr>
<th>Language:</th>
<th>Italian</th>
</tr>
</thead>
</table>

| Compulsory Attendance: | no |

<table>
<thead>
<tr>
<th>Subject Teacher:</th>
<th>Addolorata Salvatore</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tel:</th>
<th>+39 0805442705</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>e-mail:</th>
<th>addolorata.salvatore@uniba.it</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Office:</th>
<th>Department of Mathematics</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Room 10, Floor IV</th>
</tr>
</thead>
</table>

| Office days and hours: | Tuesday 11-13 Other days and times by appointment |

Prerequisites:
Mathematical knowledge which usually is acquired during the first three years of a degree of L-35 class. Especially: classical analysis of one and several variables, general topology, linear algebra, Hilbert spaces and L^p spaces.

Educational objectives:
Acquiring knowledge of variational and topological methods in the study of nonlinear problems, with particular reference to topological degrees and index theories. Applications for the study of some semilinear elliptical problems.

Knowledge and understanding:
Acquiring concepts and advanced techniques in the study of variational problems.

Applying knowledge and understanding:
The acquired theoretical knowledge is used in the study of different nonlinear differential problems.

Making judgements:
Ability to apply the mathematical tools available to study nonlinear problems coming from applied sciences.

Communication:
Students should acquire the mathematical language and formalism necessary to read and comprehend textbooks, to explain the acquired knowledge and to describe, analyze and solve problems.

Lifelong learning skills:
Acquiring suitable learning methods, supported also by consultation of the texts and by solution of problems suggested during the course.

Course program

Index theory: Index theory in topological spaces: axiomatic definition. Lusternik-Schnirelmann category: definition, examples and properties. Krasnoselski genus: definition, examples and properties. Relationship between the degree and the category of a set. Index theory related to a group of unitary transformations on a Hilbert space. S^1-index.

Abstract theorems of critical points existence and applications: Generalities on the Palais-Smale condition.
Deformation Lemma. Linking Theorem and applications to the study of some elliptic problems with sublinear or superlinear growth. Linking Theorem for strongly indefinite functionals. Application to the study of a first order hamiltonian system.

Abstract theorems of critical points multiplicity and applications
Deformation lemma for functionals compatible with an index theory. Abstract theorems of critical points multiplicity for functionals bounded from below and compatible with an index theory. Abstract theorems using the Lusternik-Schnirelmann category and applications. Study of a nonlinear eigenvalue problem. Abstract theorems of critical points multiplicity for functionals even and bounded from below. Applications to some symmetric elliptic equations. Symmetric mountain pass theorem and symmetric multidimensional mountain pass theorem. Pseudo-index theory. An abstract theorem of critical points multiplicity for functionals even and unbounded from below. Applications to some superlinear or asymptotically linear elliptic problems. Multiplicity results for strongly indefinite S^1 - invariant functionals. Application to the study of symmetric first order hamiltonian system.

Teaching methods:
Lectures and exercise sessions.

Auxiliary teaching:

Assessment methods:
Oral exam.

Bibliography:

