Esercizi su dominio, zeri e segno di funzioni

a) Determinare dominio, zeri e segno delle seguenti funzioni e riportare le informazioni ottenute su di un grafico

1) \(f(x) = \frac{x + 5}{x^2 - 4x + 3} \) \((D = \mathbb{R} \setminus \{1, 3\}; \ f(x) > 0 \text{ per } -5 < x < 1 \lor x > 3; \ f(x) = 0 \text{ per } x = -5) \)

2) \(f(x) = \frac{(9x^2 - 9x)(x^3 + 8)}{x^2 + 2} \) \((D = \mathbb{R}; \ f(x) > 0 \text{ per } -2 < x < 0 \lor x > 1; \ f(x) = 0 \text{ per } x = -2, 0, 1) \)

3) \(f(x) = \sqrt{x^4 - 2x^2} \) \((D =] -\infty, -\sqrt{2} \cup \{0\} \cup \sqrt{2}, +\infty[; \ f(x) \geq 0 \ \forall x \in D; \ f(x) = 0 \text{ per } x = 0, \pm \sqrt{2}) \)

4) \(f(x) = 5x^4 - \frac{1}{x} \) \((D = \mathbb{R} \setminus \{0\}; \ f(x) > 0 \ \forall x \in D) \)

5) \(f(x) = \log_3(x^2 - 5) \)

\((D =] -\infty, -\sqrt{5} \cup \sqrt{5}, +\infty[; \ f(x) \geq 0 \text{ per } x < -\sqrt{5} \lor x > \sqrt{5}; \ f(x) = 0 \text{ per } x = \pm \sqrt{5}) \)

6) \(f(x) = \sqrt[3]{\frac{x^2 + 1}{x^2 - 2}} \) \((D = \mathbb{R} \setminus \{\pm \sqrt{2}\}; \ f(x) > 0 \text{ per } x < -\sqrt{2} \lor x > \sqrt{2}; \ \text{nessuno zero}) \)

7) \(f(x) = \left(\frac{x - 2}{x + 2}\right) e^{-3x} \) \((D = \mathbb{R} \setminus \{-2\}; \ f(x) > 0 \text{ per } x < -2 \lor x > 2; \ f(x) = 0 \text{ per } x = 2) \)

8) \(f(x) = |x^2 - 2| e^{2x/3} \) \((D = \mathbb{R} \setminus \{0\}; \ f(x) \geq 0 \ \forall x \in D; \ f(x) = 0 \text{ per } x = \pm \sqrt{2}) \)

9) \(f(x) = \frac{\ln(x - 7)}{\sqrt{x + 2}} \) \((D =]7, +\infty[; \ f(x) > 0 \text{ per } x > 8; \ f(x) = 0 \text{ per } x = 8) \)

10) \(f(x) = \frac{x^3 e^x}{|x| - 7} \) \((D = \mathbb{R} \setminus \{\pm 7\}; \ f(x) > 0 \text{ per } -7 < x < 0 \lor x > 7; \ f(x) = 0 \text{ per } x = 0) \)

11) \(f(x) = \frac{\ln(x) + 1}{e^x - 1} \) \((D =]0, +\infty[; \ f(x) > 0 \text{ per } x > 1/e; \ f(x) = 0 \text{ per } x = 1/e) \)

12) \(f(x) = \frac{\cos x}{\sin x - 1} \)

\((D = \mathbb{R} \setminus \{\pm \frac{1}{2} + 2k\pi, k \in \mathbb{Z}\}; \ f(x) > 0 \text{ per } \frac{\pi}{2} + 2k\pi < x < \frac{3}{2}\pi + 2k\pi; \ f(x) = 0 \text{ per } x = \frac{3}{2}\pi + 2k\pi, k \in \mathbb{Z}) \)
13) $f(x) = \arctan\left(\frac{x}{x+7}\right)$ \quad ($D = \mathbb{R} \setminus \{-7\}$; \(f(x) > 0\) per \(x < -7 \lor x > 0\); \(f(x) = 0\) per \(x = 0\))

14) $f(x) = \frac{x \ln x}{\sqrt{x^2 + 2} - 3}$ \quad ($D =]0, 7]\cup[7, +\infty[$; \(f(x) > 0\) per \(0 < x < 1 \lor x > 7\); \(f(x) = 0\) per \(x = 1\))

15) $f(x) = \frac{3x - 2}{|x + 2| - 3}$ \quad ($D = \mathbb{R} \setminus \{-5, 1\}$; \(f(x) > 0\) per \(-5 < x < \log_3 2 \lor x > 1\); \(f(x) = 0\) per \(x = \log_3 2\))

Generalità sulle funzioni

1) Siano \(f\) e \(g\) le funzioni assegnate di seguito. Scrivere le espressioni di \(g \circ f\) e \(f \circ g\), determinandone i domini:

a) \(f(x) = x^2 - 3\) \quad \(g(x) = \log(1 - x)\)

b) \(f(x) = \frac{2x}{x+1}\) \quad \(g(x) = \sqrt{2 - x}\)

2) Data la funzione \(h(x) = \frac{2e^x + 1}{2e^2x + 2}\), esprimere \(h\) come prodotto di composizione in cui uno dei fattori è \(f(x) = e^x\).

3) Stabilire se le seguenti funzioni sono pari o dispari (o non hanno simmetrie)

a) \(\frac{x}{x^2 + 1}\) \quad b) \(\frac{x^4 + 1}{|x| - 3}\) \quad c) \(x \sin x\) \quad d) \(\frac{2x^5}{x^3 + 1}\) \quad e) \(\frac{x^3}{|x + 1|}\)

4) Verificare che

a) se \(f\) e \(g\) sono entrambe crescenti o entrambe decrescenti, allora \(f \circ g\) è crescente;

b) se \(f\) e \(g\) sono una crescente e l’altra decrescente, allora \(g \circ f\) è decrescente.

5) Dimostrare che la funzione \(f(x) = e^{x+5} - 2\) è invertibile e calcolare l’inversa, specificandone il dominio.
Esercizi sulle trasformazioni di grafici

Tracciare il grafico delle seguenti funzioni, utilizzando i grafici delle funzioni elementari. Indicare, inoltre, dominio e immagine di ciascuna funzione.

\[f(x) = x^2 + 2 \quad f(x) = 3(x^2 - 1) \quad f(x) = 3 - x^2 \quad f(x) = (x + 1)^2 - 1 \]
\[f(x) = |2x^2 - 4x + 7| \quad f(x) = 2x^2 - 4|x| + 7 \quad f(x) = x^3 - 1 \quad f(x) = |x^3 - 1| \]
\[f(x) = e^{x+1} \quad f(x) = -e^x + 5 \quad f(x) = e^{-x} \quad f(x) = |e^x - 3| \]
\[f(x) = |\ln(x)| \quad f(x) = \ln(|x|) \quad f(x) = -\log(x - 3) \quad f(x) = \log_{1/3}(x + 2) \]
\[f(x) = \sqrt{x + 3} \quad f(x) = \sqrt{|x|} \quad f(x) = -\sqrt{x} \quad f(x) = |\sin x| \]
\[f(x) = \sin(2x) \quad f(x) = 2\cos(x - \pi/2) \quad f(x) = \arctan x + \pi/2 \quad f(x) = -3\cos x \]